Influence of desoxyribonucleotides and ribonucleotides concentrations on the genome integrity in Pyrococcus abyssi
In the three domains of life that include Bacteria, Eukarya and Archaea, one molecule has the sovereign ability to govern life, and not the least one, the mother of all biological mechanisms, DNA. Maintaining the integrity of genomes is obviously essential for life, and faithful DNA replication and repair are the guarantees. The fidelity of these two processes may vary depending on the availability and levels (balance and ratio) of deoxyribonucleotides (dNTPs) and ribonucleotides (rNTPs) during the cell-cycle. Even if intracellular concentration of nucleotides is largely documented in Eukarya and Bacteria, it remains limited in Archaea. From many years one group of Archaea is of great interest for studying genomic maintenance, because of its ability to survive in extremes environments. Pyrococcus abyssi is one of them that is used as biological model for deciphering the stability of DNA at elevated temperature in LM2E. The present work focuses on genomic integrity and particularly on the functional characterization of the three DNA polymerases: PolD, PolB and the p41/p46 complex. Initially, the nucleotide pool has been evaluated in exponentially growing cells using the highly sensitive method that combined chromatography and mass spectrometry (zicHILIC-MS-MS). The results show that rNTPs content is 20-fold higher than dNTPs. For that reason, fidelities of DNA polymerases are challenged to select the correct dNTP over the most abundant rNTP during DNA synthesis. Despite the fact that some mechanisms allow the exclusion of rNTPs from entry to the Pol active site, recent findings indicate that ribonucleotides are incorporated by different DNA Pols with surprisingly high frequency. In this work, the obtained intracellular balance and ratio of rNTPs and dNTP have been used to analyze their effect on DNA synthesis by P. abyssi DNA Pols and cell-free extracts. Our results clearly demonstrate that rNTP incorporation is detectable with distinct efficiencies among DNA pols. Secondly, the consequences of the presence of rNMPs in a DNA template on DNA polymerisation has been examined and highlights that cell-free extracts are able to bypass a single rNMP as well as replicative DNA polymerases. To strengthen that study, single nucleotide incorporation opposite rNMP or dNMP has been carried out and the results demonstrate that replicative Pyrococcus abyssi DNA Pols can basepair the complementary rNTPs opposite dNMPs, and vice-versa, the complementary dNTPs opposite rNMPs. Furthermore, the preliminary results obtained about the nucleolysis activities of the PolD small subunit, DP1, show that the DNA polymerase D is able to remove rNMPs from a DNA strand, suggesting a first level of protection against ribonucleotide contamination of DNA. Definitely, these data indicate that the presence of transient embedded rNMPs in genomic DNA represents a universally conserved phenomenon across Archaea, Bacteria and Eukarya.